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Metastable states of an Ising-like thermally bistable system

Isidor Shteto, Kamel Boukheddaden, and Franc¸ois Varret
Laboratoire de Magne´tisme et d’Optique, CNRS-Universite´ de Versailles/St. Quentin en Yvelines, 45 Avenue des Etats Unis,

F78035 Versailles Cedex, France
~Received 12 October 1998; revised manuscript received 2 June 1999!

The lifetimes of the metastable states are investigated in an Ising-like model associated with thermally
bistable systems. A discrete mesoscopic Markovian dynamic is established using an optimized version of the
previously presented Monte Carlo entropic sampling method. This is well suited to an extensive study of the
role of the physical parameters: temperature, interaction parameter, electronic energy gap. By combining a
discrete Markovian mesoscopic dynamic and the absorbing Markov chain technique, we obtain an analytical
access to the average lifetime of the metastable state. One-variable and two-variable approximations for the
original microscopic master equation are presented and discussed. A typical difference in the thermal depen-
dence of the lifetime of the low- and the high-temperature metastable states is found, and explained as a
consequence of the temperature-dependent field associated with the Ising-like model. The validity, the advan-
tages, and the limits of the method are discussed, as well as the possible consequences on the behavior of spin
transition systems. A prospective for a possible phenomenological finite-size scaling is presented.
@S1063-651X~99!16010-0#

PACS number~s!: 64.60.My, 05.50.1q, 05.70.Ln, 64.60.Qb
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I. INTRODUCTION

Bistable systems are those that present two phases o
perimental time scales. From the strict thermodynamic po
of view, one of these phases is stable~equilibrium state! and
the other one is metastable~quasiequilibrium state!; they are
associated respectively with an absolute and a secon
minimum of the free energy in the configurational space. T
most familiar examples are supercooled vapor, ferromag
with magnetization opposite to the applied field, or pha
separation of alloys. These phenomena may involve fi
order transition with hysteresis. The system initially trapp
in a metastable state escapes~returns to the stable state!
through thermal by activated processes. In other words,
energy fluctuations of the system highly govern the lifetim
of the metastable state.

The metastable states have been the object of many s
ies @1–4#. Indeed, their understanding represents a pract
interest, e.g., for the lifetimes of memory devices, as wel
a basic interest. In almost all real systems metastable s
have finite lifetimes@5#, i.e., are essentially kinetic. Being
nonequilibrium phenomenon, the time evolution of a mic
scopic system in a metastable state is described stoch
cally, in terms of master or Focker-Planck equations. In
general case, i.e., that of the interacting systems, there i
analytical solution for the above equations. Also, mean-fie
Glauber-like approaches are not suited because they mis
fluctuations needed for the escape from the metastable s
Finally, Monte Carlo simulations in principle provide an e
act resolution of the microscopic equations, but the num
cal procedure is obviously far too slow with respect to t
magnitude of lifetimes in most of real systems.

Theories for the metastable lifetimes have been propo
on the basis of physical models, beginning from the class
nucleation theory of Becker-Do¨ring, @6# up to the field theo-
retical theory of Langer@7–10#. The classical nucleation
theory yields only qualitative results, because it cannot
PRE 601063-651X/99/60~5!/5139~12!/$15.00
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count for configurational entropy. The Langer theory pr
vides correct analytical expressions for the nucleation rat
continuous systems. Even though its validity is doubtful
discrete systems, it was successfully tested for the sq
lattice Ising system under a field at sufficiently high tempe
tures@11#.

Recently, Leeet al. @12# adapted the standard formalis
of projection operators to the microscopic Markovian mas
equation, in order to calculate the lifetime of metasta
states. Theprojection operator formalism@13–15# reduces
the number of variables without loss of information, i.e., t
reduced equation is an exact transformed form of the orig
one. But, in compensation, the initial Markovianity of th
evolution is generally lost, i.e., the projected equation c
tains memory terms. However, Leeet al. suggested to drop
the memory terms as long as the metastability of the sys
is strong. This approximation, which leads to a simple d
crete time evolution equation for macroscopic distributi
functions, will be used and discussed in the present wo
The choice and the number of the macroscopic variables
also be discussed.

The success of this approach depends on the calcula
of macroscopic probability distributions at equilibrium
which is already possible for small systems, thanks to
development of appropriate new Monte Carlo sampl
methods@16–19#. Indeed, we recently improved the origin
Monte Carlo entropic sampling algorithm introduced by L
@17#, expressed in terms of density of states sampling.
optimized it in order to access to larger size systems@16–
19#. The sampled density of states provides the comp
distribution functions at equilibrium; i.e., it implicitly con
tains the fluctuations needed for calculating the lifetimes
the metastable states. Once the density of states samplin
been performed, in reduced macroscopic variables, then
distribution probabilities, for any set of parameter valu
~temperature, interaction parameter, energy gap! can be de-
rived analytically. This analytical character confers the de
5139 © 1999 The American Physical Society
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5140 PRE 60SHTETO, BOUKHEDDADEN, AND VARRET
sity of states method a great advantage with respect to o
sampling methods~see Ref.@16#!.

In this way, for the example of an Ising model, Leeet al.
showed that the macroscopic Markovian dynamics is v
successful~i.e., compares quite well with the simulations
Metropolis dynamic! in calculating the mean lifetime o
metastable states. This was implicitly supported by our p
vious work @18#, where the relaxation paths from the met
stable state were projected on the surface of a two-vari
macroscopic distribution. An excellent agreement betw
the macroscopic Markovian path, the line of greater equi
rium probability and the mean dynamic Metropolis path w
obtained.

In the present work, we deal with the Ising-like case, i.
the general situation of the two-level systems, with an ene
gap and different degeneracies. It is worth remarking that
relaxation from a metastable state has been widely stu
for non-temperature-driven, first-order transitions, such
the classical Ising model under a field@20–22,11,12#. In the
present work we focus on thermally bistable systems, wh
undergo first-order transitions, and develop metastable s
under the variation of temperature, the other external c
straints being kept constant. A common aspect that aff
the metastability in these systems is that the tempera
plays a double role: it is both the ‘‘inner’’ driving mecha
nism of the phase transition~through its effects on the fre
energy barriers!, and the source of the fluctuations whic
activates the relaxation.

Among the multitude of such systems, going from t
q-state Potts model, biquadratic~Blume-Capel or BEG@23#!
models to glassy or disordered systems, we are intereste
a very simple case: the Ising-like, short-range interacti
system. It is equivalently described as an Ising system un
an effective field, which varies linearly with temperatur
Such a model@24,25# successfully describes the spi
crossover phenomena, and is considered here to be repr
tative of the thermally bistable systems.@These phenomen
arise in molecular iron~II ! complexes at the solid state. Suc
a molecule presents two spin states~high spin and low spin!
with different degeneracies, associated with different vib
tional properties in the two spin states separated by a en
gap D. The cooperative interaction between the spin cro
over molecules leads to a first-order transition with hyst
esis loops~see Ref.@26#!.# It is taken here in the simple cas
of an isotropic nearest-neighbor Ising square lattice und
temperature-dependent effective field.

This paper is organized as follows. In Sec. II the equil
rium properties of the Ising-like model are reviewed. Sect
III contains a brief review of the works related to the dyna
ics near the first-order transitions, i.e., the dynamics of m
stable states; the validity of Langer’s field theoretical mo
is reviewed in detail. In Sec. IV the projection operat
method is formulated and discussed; a comparison betw
one-variable and two-variable approximations is made
commented in Sec. IV C. In Sec. V some results obtained
the metastable lifetimes of the short-ranged Ising-like sys
are presented; in Sec. V C these results are commente
relation to their incidence on spin-transition systems. Sec
VII contains a general discussion and some perspectives
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II. ISING-LIKE MODEL FOR THERMALLY BISTABLE
SYSTEMS: STATIC ASPECTS

The model we consider here was first introduced
Wajnflasz and Pick@24# for molecular spin transition. It is an
Ising-like Hamiltonian, having the same expression as
classic Ising model under a fieldD. However, the eigenstate
are degenerate and have different degeneracies. The I
like Hamiltonian is@24#

H52J(
^ i , j &

sisj1
1
2 D(

i
si , ~2.1!

wheresi ,sj have eigenvalues of11,21 with respective de-
generaciesg1 ,g2 . In terms of equilibrium probabilities~or
from the partition function form! it is easily shown that this
system is equivalent to a classical~nondegenerated! Ising
model under a temperature-dependent effective field@27#:

heff5D2
1

b
ln g ~2.2!

with b5(1/kT) and g5(g1 /g2). Then, the Ising-like
Hamiltonian is written as

H052(
^ i , j &

Ji , j sisj1
1
2 (

i
S D i2

1

b
ln gD si . ~2.3!

The mean-field treatment of the problem classically f
lows and leads to the reduced Hamiltonian per site

H0

zJ
5@2m1 1

2 ~d2rt !#si ~2.4!

with the dimensionless parametersd, r , andt defined as

5
d5

D

zJ
r 5 ln g

t5
kBT

zJ
6 , ~2.5!

where z is the number of first neighbors andm5^s& the
averaged ‘‘magnetization’’ per spin, which in our proble
only denotes the difference between the fractions of m
ecules in the high-spin and low-spin states.

The reduced free energy and the corresponding s
consistent equations are then easily derived as follows:

f 5
F

NzJ
5

1

2
m22t lnF 2g coshS m1

1

2
~2d1rt !

t
D G ,

~2.6!

m5tanhS m1
1

2
~2d1rt !

t
D . ~2.7!
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PRE 60 5141METASTABLE STATES OF AN ISING-LIKE . . .
This is immediately identified to the well-known sel
consistent equation of spins-1

2 under a field. Equation~2.7!
can be inverted in temperature and then be written as
lows:

t5
d22m

r 2 ln
11m

12m

. ~2.8!

The temperature dependence of the magnetization
given by Eq.~2.8! for m restricted in the@0,1# interval. The
obtained curves are shown in Fig. 1. They exhibit first-or
transitions which are explained by noting that the effect
field deff5d2rt, temperature-dependent, changes its sign
teq5d/r , which is the transition temperature. This is simil
to the classical Ising model under a field: the negative~posi-
tive! magnetization stable state is obtained at low~high! tem-
peratures, due to the negative~positive! effective field.

Different behaviors of the model in Fig. 1 are reviewe
showing both first-order transitions and simple conversi
according to the values ofD, r , andJ, as well as a critical
temperatureTC5zJ. The spinodal curve is obtained by sol
ing the equation]t/]m50. This illustrates the strong simili
tudes between the behaviors of this model and the ph
diagram of the liquid-gas transition. For further analysis
the Ising-like model, see Ref.@27#.

From this mean-field treatment, the first-order transit
develops only if the equilibrium temperatureTeq is located
below the critical temperatureTC . Even though this is a
mean-field result, we think that it is not less than an ex
result, as long as the existence of a first-order transition
field h ~located at theh50) is rigorously proven for the
Ising model, at subcritical temperatures. In fact, a ma
ematical singularity of the free energy is observed ath50,
for the Ising model under a field, at subcritical temperatu
@28,29#. It seems evident that the above observation wo
be immediately transposed for the Ising-like model cons

FIG. 1. Hysteresis loops in the (m,t) plane wheret5kBT/zJ is
the dimensionless reduced temperature. These curves are calc
using Eq.~2.8! for r 52.5. The energy gap values, in reduced un
are from left to right:d50, 1, 1.5, 2.0, 2.5~critical value:dc5r )
and 3. The parts of the curves with a negative slopedm/dt, corre-
spond to unstable equilibrium states. The full line curve is the sp
odal curve, i.e., the limit of instability area.C is the critical point
(tC51, mc50, dC5r ).
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ered here: that is, the temperature-driven, first-order tra
tion should develop as long as the temperature where
effective field vanishes stays below the exact critical te
perature of the system, i.e., the order-disorder transition t
peratureTOD of the corresponding Ising model without field
For a square-lattice first-neighbor Ising-like system, exac
resolved, the condition isD/r<2.27J. For a one-
dimensional short-range interaction system the ord
disorder transition is located at 0 K; therefore no therm
first-order transition is expected for the one-dimensio
~1D! Ising-like systems. Nonetheless the latter is a gene
property of one-dimensional systems with short-range in
actions.

III. DYNAMICAL ASPECTS OF KINETIC ISING MODELS

The metastable state dynamics of the classical Ising
tem ~temperature-independent field! has been widely studied
by dynamic Monte Carlo,@21,20,22,11,30# or by classical
@6,21# or field-theoretical droplet theories@9#. We outline
here the main results of the nucleation theory in short-ra
interaction systems; the involved assumptions are discu
in detail in Ref.@4#.

Both classical and field theoretical theories are based
the picture of the nucleation of the stable phase up t
‘‘critical droplet’’ after which the growth proceeds withou
cost in energy. At a coarse-grained level, the system is
scribed by a set of variablesc i and next, dynamic equation
are established for the distribution functionalr($c i%,t) as
continuity equations in the form of the Focker-Planck equ
tion:

]r

]t
52(

i 51

N
]Ji

]c i
, ~3.1a!

with J, the probability density current, given by

Ji52(
j 51

N

Mi , j S ]F

]c j
r1kBT

]r

]c j
D . ~3.1b!

The underlying idea is that during nucleation, the metasta
quasiequilibrium states lie in the vicinity of configuration
which minimize the equilibrium free energy. Then, the rela
ation from the metastable state occurs when the sys
moves from a local minimum ofF$c% to another, passing
nearby the lowest accessible saddle point ofF.

The steady-state solution of Eq.~3.1a! provides a constan
nucleation rateI , i.e., the inverse lifetime of the metastab
state. The solution is obtained as follows:~i! the calculations
are restricted to the vicinity of the saddle point;~ii ! appro-
priate boundary conditions are imposed assuming that
stationary distribution function coincides with the equili
rium solution on the metastable side and is zero on the st
side~the latter condition means that droplets bigger than
critical size are removed from the system!; and ~iii ! an ex-
pansion ofF̄$c% is taken around the saddle pointc̄. The
stationary currentJ is then derived from Eq.~3.1b!, while the
nucleation rate is obtained by integrating the currentJ
through the surface in the vicinity of the saddle point. B
noting respectivelyc1(r ), and c2(r ) the metastable and
stable states andc̄(r ) the saddle point state, the resultin
nucleation rate can be written as

ted
,

-
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5142 PRE 60SHTETO, BOUKHEDDADEN, AND VARRET
I 5I 0 exp~2DF/kT!, ~3.2!

where

DF5F$c̄%2F$c2%. ~3.3!

For sufficiently small fieldsH, the saddle point solutionc̄
leads to the expression ofDF̄(R) for a d-dimensional drop-
let of the stable phase in the metastable medium:

DF̄~R!5Vd
(d21)/dRd21s2uHuDcVdRd, ~3.4!

whereVd
(d21)/dRd21 andVdRd, respectively, are the surfac

and the volume of the droplet,s the surface energy at equ
librium and Dc5c12c2 . Maximizing this expression
with respectR yields the critical radius

Rc5
~d21!s

uHuDc
~3.5!

and the corresponding free-energy barrier is

DFc5S d21

uHuDc D d21

~Vsd!. ~3.6!

For kinetic Ising models~Glauber, Metropolis!,

Dc5Dm5meq2mms ~3.7!

wheremeq andmms are the mean values of the one dimens
order parameter~the magnetization! respectively at equilib-
rium and in the metastable state. The prefactorI 0 of the
nucleation rate Eq.~3.2! can be written as in@31#: I 0
5A(T)uHub1c. Here A(T) is a nonuniversal function de
pending only on the temperature and on the dynamic mo
c is a purely dynamic constant, andb is an universal constan

b5 H ~32d!d/2 for 1,d,5, dÞ1
27/3 for d53. ~3.8!

While, in general, the saddle-point calculations are based
approximate free-energy functionals given by Ginzbu
Landau or renormalization-group theory, for the tw
dimensional Ising model one may obtain very accurate
culations thanks to the exact equilibrium Onsager’s soluti

Concretely, as indicated by various works both analyti
@31,32# and numerical@33#, the free-energy cost of the criti
cal droplet can be very well approximated by zero-field eq
librium quantities: ~i! Dm is substituted by its zero field
value, i.e.,Dm52meq(h50) given by the Onsager solutio
@34,35#; ~ii ! the surface energys is obtained by combining
the Wulff construction of the droplet surface shape with
anisotropic zero-field surface tension@36#.

An important feature of these results on the nucleat
rate for short-range models is that the exponential term
independent of the system size. This means that the lifet
does not divergefor macroscopic sizes.
l,

n
-

l-
.
l

i-

e

n
is
e

IV. MEAN-FIELD-LIKE MESOSCOPIC DYNAMIC:
A DISCRETE MARKOVIAN DYNAMIC

In the previous section we outlined that nucleation the
is valid for small fields. Also, except for equilibrium solub
models, the theory requires the use of some phenomeno
cal mean-field free energy functional, which is not valid ne
the critical temperature. Moreover, for more complicat
systems, a correct free-energy functional would not be ob
ous to obtain, especially for disordered or diluted syste
where it is difficult to account analytically for the spati
distributions. Also, the continuous field theoretical approa
is not valid at low temperatures where the discreteness of
lattice becomes important.

We make use here of the method introduced by Leeet al.
@12# ~see also@18#!. As shown in Ref.@12# it applies to weak
and moderate fields, at any temperature@18,37#.

A. Master equations and projection operator method

The static version of the Ising model does not itself co
tain any internal dynamics; the Hamiltonian commutes w
the spin operators and therefore cannot provide any me
nism for the dynamics. The underlying dynamics of a syst
of spins comes for example from spin-phonon interactio
and these could be introduced in the Ising Hamiltonian
the addition of corresponding quantum mechanical opera
@10#. In this case the Hamiltonian would contain its ow
dynamics, and the evolution in time would be exactly pr
vided by the Liouville equation for the microscopic dens
matrix r of the system. This is a highly complicated set
equations and it is needed to simplify it in terms of a fe
relevant mesoscopic or macroscopic variables. It is, howe
very difficult to obtain explicit equations for cooperative sy
tems, from this first-principle approach. Zwanzig and Nak
jima @13,14,38# have introduced and developed aprojection
operator methodin order to provide exact, non-Markovia
equations for the distribution functions of the relevant o
servables.@The stochastic description of the dynamics is
ways associated with an important reduction in the num
of the system’s degrees of freedom and, if, initially, the~de-
terministic! equations of motion are ‘‘Markovian,’’ the rig-
orous reduced description must contain memory effects
order to restore the lost information from the missing degr
of freedom.# In most cases, these exact~but formal! projec-
tions cannot be put in an explicit equation form. They a
useful as a structure upon which we can impose approxi
tions leading to Markovian microscopic equations; also, th
may serve to know what has been left out and how to pu
back in.

For some particular systems, it is possible to estab
explicitly the Markovian master equation for the releva
variables, by introducing various approximations at the le
of Zwanzig equation@39#. But generally this remains very
difficult, and the master or Focker-Planck equations are
troduced phenomenologically

]Pi

]t
52(

i 51

N

PiWi→ j2PjWj→ i . ~4.1!

The dynamics is introduced only at the stochastic lev
through the transition probabilitiesW as an artificial substi-
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PRE 60 5143METASTABLE STATES OF AN ISING-LIKE . . .
tute of the real underlying dynamics. Often, there are pr
abilities through an arbitrary choice from the detailed b
ance, which they must satisfy at equilibrium@40#:

Pi
eqWi→ j5Pj

eqWj→ i . ~4.2!

Despite its drastic reduction with respect to the init
Liouville equation, the phenomenological master equat
@Eq. ~4.1!# cannot be handled for a system of interacti
spins: it represents a system of 2N equations for an Ising
model ofN spins. The only rigorous way to solve it, exce
for particular cases@41#, is provided by Monte Carlo meth
ods. However this corresponds to an integration in time
becomes totally unsuitable for long-lived metastable state
is, therefore, tempting to apply projection operator te
niques at this level too, in order to reduce the dimensiona
of the master equation. The benefit of such a reductio
easier to see in the discrete time version of the master e
tion:

r i~ t2!5(
j 51

N

Wi j r j~ t1! ~4.3!

or in the vectorial notation

rW ~ t11!5WrW ~ t !, ~4.4!

whereW, the stochastic matrix, is a 2N32N matrix for an
N-spin Ising system. Leeet al. @12# have adapted the stan
dard projecting approach at the level of a microscopic M
kov process described by Eq.~4.4!. That is, for a macro-
scopic variable as the total magnetizationm, the projected
exact equation onto the subspace spanned bym is

PrW ~ t11!5PW ~ t11!5PWPW ~ t !1PW(
l 51

t

@QW# l PW ~ t2 l !

1PW@QW# trW ~0!. ~4.5!

@Note thatm5N3 the reduced magnetization used in Se
II.# P makes a projection of the microscopic distributio
rW (t), from a 2N-dimension space over a subspace of dim
sion N11 ~the number of discrete components of the ma
netization m). Q is the operator which projects in th
complementary subspace, i.e.,P1Q51. This ‘‘motion’’
equation contains non-Markovian contributions, represen
the memory of the values of variablen @n is the number of
spin up given by:n5(11m)/2# at earlier times, and infor-
mation about the initial state of the other variables~second
and third terms, respectively!. Neglecting the non-Markovian
contributions, at this level, would lead to a Markov proce
described by aN3N stochastic matrix that can be handle
for finite systems.

B. The macroscopic master equation for the order parameter:
how to solve it

In this section we give some technical details concern
the derivation of the lifetime distribution moments, deduc
from the macroscopic master equation resulting from
~4.5! after the Markovian approximation. That is,
-
-

l
n

d
It
-
y
is
a-

-

.

-
-

g

s

g
d
.

PrW ~ t11!5PW ~ t11!5PWPW ~ t !. ~4.6!

Here the vectorPW (t) belong to a 2N-dimension space but ha
only N11 nonzero elements corresponding to the numbe
values of the remaining variablen. Thus Eq. ~4.6! is an
equation for the distributionP(n,t) of the macroscopic vari-
able n. The projectionPW of the microscopic stochasti
matrix W onto the subspace spanned by the coordinate
the order parametern reduces to an (N11)3(N11) matrix,
as the nonzero elementsPW correspond to theN11 coor-
dinates of the order parametern. This projection will be
noted asW. We will not calculate here the matrix elemen
provided by the projection. Indeed, as the choice of the
croscopic stochastic dynamics is arbitrary, it is made as w
at the level of the macroscopic equation, once the Mark
property is justified. A natural choice for the elements ofW
follows from the macroscopic detailed balance given by E
~4.2!:

Peq~n1!W~n1→n2!5Peq~n2!W~n2→n1!. ~4.7!

In order to keep the local dynamics, identical to microsco
dynamics, we taken25n161, i.e., we assign the rate zero
the transition between configurations differing by more th
one spin state. Next, as for the rate transitions obeying
~4.7!: we take Metropolis-like transition rates, while the d
agonal element is derived from the normalization of the tr
sition probabilities:

W~n→n11!5minH 0,
Peq~n11!

Peq~n! J , ~4.8!

W~n→n21!5minH 0,
Peq~n21!

Peq~n! J , ~4.9!

W~n→n!512W~n→n11!2W~n→n21!. ~4.10!

Of course, manipulating the (N11)3(N11) stochastic
matrix elements requires knowledge of macroscopic equi
rium probabilitiesPeq(n) given by

Peq~n!5 (
^ i ,n&

Pi
eq5 (

^E,n&
D~E,n!exp2bE ~4.11!

where ^ i ,n& (^E,n&) denotes a sum over configurationsi
~energiesE) at fixedn. D(E,n) the density of states stand
for the number of states at the energyE and ‘‘magnetiza-
tion’’ n. Thanks to the recent developments in the Mon
Carlo sampling of the free energy@12,18,19,42,37#, the mac-
roscopic canonical distributions~or the density of states! can
be obtained for systems of more than 104 spins. We use here
the entropic sampling, in an optimized version developed
one of us@42#: through a unique procedure it furnishes t
density of states in a dimensionless parameter space, w
is relevant for any value of the model parameter set.

In the dynamics defined by the upper stochastic mat
the time evolution of the macroscopic probability distrib
tion PW (t)5$P(0,t),P(1,t), . . . ,P(n,t), . . . ,P(N,t)% is
determined by the simple equation

PW ~ta!5WtaPW ~0!, ~4.12!
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which follows recurrently from Eq.~4.4! and by using of the
stationarity ofW, as it appears in Eqs.~4.8!. This is an es-
sential property of a stationary Markov process. Then
metastable lifetimes are calculated by the absorbing Mar
chains technique@43,44# as in Ref.@12#. A boundary is de-
fined for the metastable phase, which determines the t
sient metastable states. Therefore a submatrixT of W corre-
sponding to them defines the dynamics during the metast
lifetime. We denote the probability of existing and the pro
ability of being absorbed at timeta Pex(ta) and Pabs(ta),
respectively. They are related by the following equation:

Pex~ta21!5Pex~ta!1Pabs~ta!, ~4.13!

while Pex(ta) is simply given by

Pex~ta!5(
n

Pn~ta!. ~4.14!

Pabs(ta) can be understood asPml(ta); the metastable life-
time distribution is easily derived as

Pml~ta!5Pabs~ta!5(
n

@~Tta212Tta!PW ~0!#n . ~4.15!

In a further step, the moments of the metastable lifeti
distribution are obtained as:

^tk&5(
n

(
a51

`

@~ta!k~Tta212Tta!PW ~0!#n . ~4.16!

Then, using the properties of power series, the moments
simply expressed in terms of the fundamental matrixN5(I
2T)21. For example, the first and second moments are

^t&5(
n

@NPW ~0!#n , ~4.17!

^t2&5(
n

@~2N22N!PW ~0!#n . ~4.18!

The calculation of the average metastable lifetime only
plies a matrix inversion, irrespective of the order of mag
tude of the lifetime.

C. One-variable and two-variable macroscopic dynamics

The question remains: what are the errors introduced
neglecting the non-Markovian contributions, when we on
seek to obtain the metastable lifetime distribution? There
theoretical arguments@45,46# to convince that the memor
effects may be neglected on a time scale much larger
the characteristic time of the eliminated, rapid variables. T
means the variables, involved in the reduced equati
should slowly vary with respect to those, which are elim
nated by the projection technique. In the present work,
variables eliminated in the projected equation@see Eq.~4.5!#
are the spin state of each site and, i.e., the complete
configuration has been replaced by the total magnetizat
However, in the metastable state, the spin configurati
have changed several times during a time interval where
magnetization practically does not varies. In other term
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memory effects are lost at time intervals which are large w
respect to the spin correlation times, but remain small w
respect to the metastable lifetime. The calculations of L
et al. @12# are highly convincing: they compared the depe
dences of the metastable lifetimes on the applied field,
tained either by the microscopic~Monte Carlo! dynamic, or
by the projected macroscopic dynamic. They also give
excellent agreement at weak and moderate fields. For st
ger fields, the metastable lifetime became shorter, i.e.,
not large enough with respect to correlation times.

We now consider the number of macroscopic variables
the reduced Markovian dynamic. It is expected that
larger the number, the closer the result to the true mic
scopic (N-variable! dynamic. Following our previous work
@18# a two-variable dynamic is obtained by the projecti
onto a subspace spanned by total magnetization and
energy. Energy is also a slow variable for the metasta
state relaxation. In Fig. 2 we compare the metastable l
times, obtained by the Monte Carlo microscopic dynamic,
the one-variable and the two-variable Markovian dynam
calculated in function of the applied field. Technical deta
on the calculations are given in the next section. The ca
lations are made for a 24324 square lattice, atT50.88Tc.
The three dynamics have different time scales but we
scaled them in such a way that the lifetimes coincide at
smallest field value, where the dynamics are quite equ
lent. Surprisingly, the two-variable dynamic does not fit b
ter the Monte Carlo curve than the one-variable dynam

FIG. 2. The average lifetime of the metastable state~relaxation
time from m52N to m50) of the classical square lattice Isin
model plotted as a function of the applied field, for a 24324 lattice,
at T50.88TC . We compare the results obtained by the microsco
Metropolis dynamic~full line! with those from the macroscopi
dynamic approximation with one variable,m ~crosses-dashed line!
and two variablesm ands ~dotted line!, with m,s5magnetization
and energy, respectively. The field varies in the stochastic reg
All values are calculated by averaging over 1000 independent pa
The time scales are rescaled at the lower field value and are
pressed in Monte Carlo steps per spin~MCSS!; the field is ex-
pressed in temperature units~i.e., energy!. The straight lines ap-
proximate the stochastic~weak fields! and the deterministic~strong
fields! regimes for both the one-variable and the two-variable
namics; the pointsD1 and D2 correspond, schematically, to th
crossover points~dynamical spinodal points! for the one- and two-
variable dynamics, respectively.
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From the point of view of the Markovian approximation
the differences in the time-scales between the three dyna
can be interpreted as due to the time coarse-graining whic
implicitly involved in the Markovian approximation. Th
size of ‘‘time grain’’ depend on the physical details~corre-
lation times!; in this case it depends on the field value. Th
explains the deviations which are observed between the t
lifetimes curves as the field is increased.

The paradoxical situation of a two-variable approximati
which is not really improved with respect to the one-varia
approximation, is not rare in statistical mechanics, e.g., i
also present in the Kikuchi cluster variational meth
~CVM! for the order-disorder transitions in solids@47,48#. It
is an entropic approximation at equilibrium, which trea
clusters of a cell in the mean-field approximation, but c
rectly includes all the spatial correlations between sites in
cluster. It is well known that increasing the cluster size do
not lead always to an improvement of the approximation
would be expected; it is specially the case for frustrated s
tems @49#. The explanation here should sought in terms
the additional correlations associated with the second ma
scopic variable.@There are cases where including only a p
of the correlations may be followed by a lack of the co
straints serving as boundary conditions for the latter.# Also,
although a macroscopic dynamic based upon the magne
tion and energy conserves an important part of the mic
scopic information, there is an essential quantity in nuc
ation phenomena which we miss here, that is the droplet s
We think that a macroscopic dynamic including the drop
size would be very close to the microscopic one.

For relatively strong fields (H*25 K, for the sizes con-
sidered here!, the one-variable dynamic approximation
clearly less appropriate than the two-variable case beca
as it has been argued in Ref.@18#, they have different
‘‘mean-field-like’’ spinodals, i.e., the field values at whic
the ‘‘saddle point’’ vanishes are different. This leads to t
collapse of the barrier in one dimension prior to the collap
of the barrier in two or more dimension distributions. How
ever, for these fields, the metastable lifetimes are short
the above arguments have little practical impact, all the m
so that the Markovian approximation is less valid at the
fields. We will use therefore the macroscopic one-varia
Markovian dynamic to the Ising-like model with a temper
ture dependent field, as it involves much smaller matrice

V. THE ISING-LIKE MODEL IN THE ONE-VARIABLE
DYNAMIC

We apply here the one-variable mesoscopic approac
the calculation of the metastable lifetimes for the tw
dimensional ~2D! Ising-like model, expressed with
temperature-dependent effective field. We consider only
nearest-neighbor~NN! ferromagnetic interactions. We us
the dynamic defined in the previous section, with the ma
coefficients given in terms of macroscopic canonical dis
butions; they are calculated semi-numerically, for each s
tem size, through the density of statesD(M ,E), which is
sampled by Monte Carlo entropic sampling. As our dens
of states (D@M ,S#5D@M ,E(M ,S)#) is a function of dimen-
sionless variablesS5(^ i , j &sisj and M5( isi ,—so as E
5heffM2JS—~see Ref.@18#!, there is a considerable adva
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is

ee

is

-
e
s
s
s-
f
o-
t
-

a-
-
-
e.
t

se,

e

nd
re
e
e

to
-

e

x
-
s-

y

tage that the sampling be performed only once for a sys
size, allowing for a continuous variation of the model para
eters: coupling constantJ, energy gap for the two spin state
D, degeneracy ratiog and, of course, temperatureT @18#.

The initial state distribution is taken in a particular met
stable configuration, where all the spins are opposite to
effective field. Due to the temperature dependence of
field, for T,Teq the metastable state ism511 and, forT
.Teq m521. The transient metastable states are chosen
tween all configurations corresponding to the same sign
the order parameter, i.e.,21<m,0 for T.Teq and 0,m
<1 for T,Teq. This defines the absorbing boundary for t
metastable state atm50. It is well known for short-ranged
interaction models@1,50,2# that there is no unique way to
define the metastable region of the configuration space,
the metastable lifetimes will finally depend on the arbitra
location of the boundary. However, as it was shown in d
ferent studies concerning the Ising model in Monte Ca
dynamics@22,11#, the results are not really sensitive to th
location of the boundary, as long as the boundary is far fr
the metastable quasiequilibriumm value. Therefore the ab
sorbing boundary is fixed here at the simple valuem50.
Also, we always initialize the metastable state in a satura
state; indeed we have checked that the results did not de
on the initial distributions in the metastable region.

The average valuêt& of the lifetime ~i.e., first-passage
time!, calculated as described in Sec. IV B, has been divid
by the number of spinsL2 in order to give the times in units
of Monte Carlo step by spin~MCSS!. It corresponds to the
dynamical assumptions that each spin interacts with the
bath independently of the other spins, and that the magnit
of the fluctuation energy per spin, transmitted by the h
bath, only depends on temperature but not on the system
~the approximation of an ‘‘infinite’’ heat bath!.

We shall first investigate the specific role of temperatu
for the dynamic of this model. Next we analyze the resu
on the lifetime in relation with the behavior of spin-crossov
systems@26#, for different values of coupling constantJ
(60 K<J<150 K) and energy gap~crystal field! D.
(200 K<D<1000 K). All the calculations were performed i
the 2D NN Ising-like model, for the system sizes 16316,
24324, and 32332 spins.

A. The ambiguous role of temperature

In Fig. 3~a! we show the lifetime of the metastable stat
on each side of the thermal first-order transition (T<Teq:
m511; T>Teq: m521), as a function of temperature
The peak in the lifetime corresponds to the first-order tr
sition atTeq5(D/ ln r).

A striking property displayed by Fig. 3 is the net asym
metry in the metastable lifetimes for the high temperatu
and low temperatures. While the high-temperature me
stable state vanishes rapidly as temperature is incre
above the transition temperatureTeq, the low-temperature
metastable lifetime decreases less rapidly when tempera
is decreased belowTeq, goes to a minimum, and finally in
creases at low temperatures. Obviously the temperature p
a double role here: it is both the driving force of the equili
rium phase transition through the variation of the effect
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5146 PRE 60SHTETO, BOUKHEDDADEN, AND VARRET
field and it is also the source of the thermal fluctuatio
energy, which induces the crossing of the energy barr
Above Teq, the two driving forces change in the same wa
Below Teq the two driving forces of the relaxation change
opposite ways: the destabilizing effective field increa
while the fluctuation energy decreases. The minimum at
temperatures occurs because at these temperatures the
tuation energykBT decreases more rapidly than does t
energy barrier.

B. The identifications of different regimes

In the following, our interpretation will be partially
helped by the known results from the simple Ising syst
under an external field. First, at weak effective fields
lifetime increases with the number of spins, just as at z
field. The crossover effective field, the thermodynami
spinodal point~THSP! @11# depends on the temperature a
the corresponding crossovers for the present model when
varies the temperature~the effective field and the tempera
ture vary simultaneously!, the two temperaturesTTHSP

2 and
TTHSP

1 obeying

FIG. 3. The metastable lifetime for a 2D Ising-like model as
function of temperature withJ5100 K, D5500 K, g5150 and size
L3L, with L516,24,32. The timescale is converted in Mon
Carlo steps per spin~see text!: ~a! average lifetimes~first moment
of the lifetime distribution!; ~b! relative standard deviation~second
moment of the lifetimes distribution!.
s
r.
.

s
w
uc-

e
o
l

ne

uD2T ln r u5
1

L F JT

2meqTTHSP
G1/2

. ~5.1!

As in Ref. @11#, this is established by considering the lim
temperature for which the critical droplet occupies the wh
system. In these temperature~effective field! regions, the
lifetime increases exponentially with the system size, as
stable equilibrium states. Asmeq(T) varies very slowly
around our transition temperatureT50.44Tc @35#, while
J(T) ~the surface tension of the nucleating droplet! being a
decreasing function of temperature~see Ref.@51#! then, the
‘‘thermodynamic spinodal’’ temperature will rapidly con
verge to the transition temperatureTt when the size of the
system increases. Next, for larger temperature differen
uT2Ttu ~the effective unfavorable field for the metastab
state increases! the Ising system is in the ‘‘stochastic’’ re
gion, according to the definitions given in Ref.@22# for the
standard Ising system. It follows from Fig. 3~a! that the life-
times are decreasing functions of the size in a large rang
temperatures. In this temperature~field! region, according to
droplet theory, the lifetime should be inversely proportion
to the size, as given by~see Ref.@11#!:

^t&5@A~T!#21N21H21 expS DF

kBTD , ~5.2!

whereDF5 (J(T)/uHu). Therefore, the behavior is some
what different for the present Ising-like system, because
the temperature dependence of the prefactorA(T) and of
DF(T), but the variation with size is the same.

In the stochastic region of the field~here the temperature!
the growth of the stable phase occurs through only one d
let ~very small probability for other droplets to appear f
these fields! and the life times are very large. Hence, it is
Poisson process a macroscopic characteristic of which is
the standard deviation of the lifetime distribution is of th
same order as its first moment. For larger fields~i.e., larger
uT2Ttu here! the growth occurs via several droplets, th
standard deviation of̂t& is much smaller than̂t& and the
latter is given by

t~h,T!'uhu2 b1c1d/d113expF bJ~T!

~d11!uhud21G . ~5.3!

As follows from Sec. III~see also Refs.@9, 31# and@22,11#!,
b1c53 in two dimensions and, then we have for the av
age lifetime of the square lattice Ising-like model:

t~h,T!'uD2rTu2 5/3expF bJ~T!

3uD2rTu
. ~5.4!

The crossover field between the two regimes, as discus
in Ref. @11#, is determined by considering the field for whic
the distance between droplets is equal to the critical dro
size; this field was called the dynamical spinodal point~DSP!
in Ref. @22# and is given by

uhDSPu.
bJ~T!

3 lnL
. ~5.5!



ing

a
or
g
a-

i
e

via
w

c

t
nd
lax
ss

i

b

ta

.
ta

is
he

e
the
ns
ou-

tive

e
ant,
if

for a
f
be

sys-
.
rns

he
tate

k

d

to

of

p in
p-
out
ns.

ible
ac-
pe

s s a
f

PRE 60 5147METASTABLE STATES OF AN ISING-LIKE . . .
The corresponding spinodal for the temperature in the Is
like model remains as

uD2rTDSPu.
bJ~TDSP!

3 lnL
. ~5.6!

It follows from Eqs.~5.6! that the DSP in temperature, as
solution of Eq.~5.6!, does not have a monotonic behavi
with the temperature~in contrast with the standard Isin
case!. Indeed, theHDSP is a decreasing function of temper
ture, which indicates a complex behavior of the dynam
spinodal temperature~DST!, for the high-spin metastabl
state.

As an illustration, we have calculated the standard de
tion by the macroscopic dynamics method, which is sho
in Fig. 3~b!. As argued in Ref.@22#, the relative standard
deviations r of ^t& is of the order of̂ t& in the stochastic zone
and the crossover regime from stochastic to deterministi
observed as soon ass r is less than 1. In Fig. 3~b! the cross-
over appears twice: at high temperatures, and around
minimum of the lifetime at low temperatures, while arou
the first order transition and at low temperatures the re
ation of the metastable state is entirely a stochastic proce
As it appears in both Fig. 3~b! and Eq.~5.6! the dynamical
spinodal temperature is size dependent.

C. On the spin-crossover systems

In Fig. 4, the temperature dependence of the lifetime
shown for different values of the ratioD/r . The variation of
D in spin-crossover compounds can be physically realized
applying an external pressure~see Ref.@26#!. D andTeq are
increasing functions of pressure because the low-spin s
has a smaller volume.

The effect ofJ is shown in Fig. 5. As is illustrated in Figs
4 and 5, the lifetime minimum of the low-temperature me
stable state disappears for strong gapD or weak coupling
constantJ. In fact the relevant quantity to be considered
the ratio J/Teq because of the competition between t
monotonic decrease of the effective fielddeff5D2rT with

FIG. 4. The average lifetime of the two metastable states a
function of the temperature for the 32332 system, for J
50.44TC , g5150 and for different values of the separation fieldD
from 250 K ~full squares! to 750 K ~crosses!.
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temperature and the strong reduction of the fluctuations~with
energykBT) at low temperatures. Indeed, qualitatively, w
can just observe that there is no longer a minimum in
lifetime, if the energy barrier vanishes before the fluctuatio
begin to decrease faster. This can occur either for weak c
pling constantJ ~weak, rapidly vanishing barrier! or for high
first-order transition temperatures. In this case, the effec
field deff is located in thestrong field region @11#, which
corresponds here to low temperatures@52#.

Next, it follows from Figs. 4 and 5 that the lifetime of th
low-temperature metastable state may be very import
even far from the first-order transition region; especially
the transition is located at low temperatures, as happens
relatively weak energy gapD. For estimating the orders o
magnitude expected in spin-transition systems, it should
noted that the typical spin state relaxation rates in these
tems@53# are between 106 and 109 s21 at high temperatures
This can be considered as typical spin-flip frequency. It tu
out that, whileD varies from 300 to 250 K, the lifetime
minimum of the low-temperature~high-spin! metastable
state varies from a few hours to millions of years for t
sizes considered here. This means that the low spin s
would hardly ~or never! be observed for, relatively, wea
values of the energy gapD ~200–300 K! or strong values of
the interaction parameterJ, in systems of the size considere
here (;300 up to 1024 spins!.

The cooperative effects investigated here seem able
increase the lifetime of the metastable high-spin~low-
temperature! state by up to a factor;10 orders of magni-
tude, compared to the intrinsic lifetime, i.e., the inverse
the intrinsic spin-flip frequency.

Of course the present results correspond to a first ste
the study of spin-transition systems. A more realistic a
proach should include some additional considerations ab
the nature of spin-transition molecules and their interactio
We will mention here two of them.

~i! There is experimental evidence@26# for an intramo-
lecular energy barrier between both spin states. As a poss
extension of the model, this energy barrier might be
counted for explicitly and should lead to an Arrhenius-ty

a FIG. 5. The average lifetime of the two metastable states a
function of temperature for the 32332 system at different values o
the coupling constantJ. D5500 K, g5150 andJ550 K, 70 K and
90 K.
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5148 PRE 60SHTETO, BOUKHEDDADEN, AND VARRET
thermal dependence for the individual spin-flip frequenci
Such an easy extension would result in increasing the
times for both spin states, especially at low temperatures
suggested by the experiments. However the height of
energy barrier should be specific of each type of molecu
unit.

~ii ! From other viewpoints concerning the nature of t
interactions in spin transition systems@26#, a realistic model
should contain both short- and long-range interactions. A
consequence, the lifetimes would strongly increase. Also,
size dependence of the lifetime time is very different b
tween short and long range interactions. While for t
former, the lifetime, after being inversely proportional wi
the size, becomes size independent at larger sizes~all other
parameters kept constant! @11#, for the later the lifetime ex-
ponentially increases with the size. It suggests that exp
ments on the relaxation time on small systems might br
new elements about the nature of interactions in sp
transition systems and about their applications for inform
tion storage, strongly related with the stability of the phas
In addition, we think that it would be interesting to exten
this kind of study to a similar photoexcitable system und
permanent light irradiation.

VI. A POSSIBLE FINITE-SIZE SCALING

Some qualitative arguments may be developed allow
to speculate for the large size behavior, using the res
from smaller sizes. An essential point is the difference
tween the one droplet and the multidroplet growth of t
stable phase. In the former the lifetime is inversely prop
tional to the size while in the latter it is size independe
Consequently, the size scaling will not consist of a mon
tonic extrapolation, but will involve a crossover between t
regimes, for a temperature-dependent size value~the dynami-
cal spinodal size!, as it appears in Eq.~5.6!. Conversely, at a
given size, different temperatures will correspond to differ
regimes: while the multidroplet nucleation regime is reach
far from the first-order transition temperature, the poi
closer to the transition point have important lifetimes and
still in the single droplet regimes. As an illustration, in Fig.
we show the relative standard deviation forL516 andL
532.

It suggests that for larger sizes, the lifetime will be t
same around the lifetime’s minimum region of the tempe
ture, while it will be lower in the region closer to the trans
tion, where they are very important for the sizes conside
here. In other words, we can be sure to have reached
asymptotic behavior at the points where the relative stand
deviation is lower than 0.5. An empirical finite size-scali
may, then, be developed simply by extrapolating the laws
the lifetimes at the two regimes, together with the law for t
dynamical spinodal temperatures, using the small size
sults. However, a confident finite-size scaling requires rea
ing sizes far beyond the dynamical spinodal size, and will
the object of another work. We think that these simple qu
tative arguments can apply to other short or medium-ran
models as long as the concepts of the droplet nuclea
theory are valid.

VII. DISCUSSION AND PERSPECTIVES

We firstly point out a major advantage of the prese
method for studying the relaxation of metastable states
.
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temperature driven, first-order transitions. The method st
from a sampled density of states which is used for calcu
ing macroscopic probabilities at any temperature, in orde
establish a macroscopic dynamics that can be solved s
analytically. Concretely, the important numerical effort—f
obtaining the density of states—has to be made only on
then the resolution of the dynamics only involves algebr
manipulations of matrices, irrespective of the dynamic ch
acteristics. Obviously, the amount of information included
the density of states is huge and, indeed, requires much m
CPU time than multicanonical sampling@16#, which pro-
vides the free energy~i.e., equilibrium distribution! at a
given temperature. However, the multicanonical sampl
has to be made for each temperature, so as the entropic
pling appears as the most suitable method for temperat
dependent problems and, more generally, for all investi
tions where several parameters have to be explored. The
vantage is even greater, since we have proposed a versio
the entropic sampling iterative procedure, which can save
important amount of CPU time, making it possible to wo
with systems larger than 1000 sites@37#. Also, we believe
that further improvements of the entropic sampling iterat
procedure are possible, specially by using more fundame
mathematical tools.

The validity of the method, especially its accuracy f
strong metastable states @12#—weak field, low
temperature—is related to the specificity of the metasta
states relaxation, which can be represented as very s
quasiequilibrium processes. From this point of view, th
droplet theory of Langer, based upon similar hypothe
about the nature of the relaxation is not less valid for stro
metastable states. Nevertheless, we stress that the ess
advantage of this method in studying metastable states~slow
relaxations!, is that it can be used, in principle, for an
model. The method is obviously limited by the cost of t
procedure, but the cost is only related with the number
macroscopic variables spanning the expression of ener
eigenvalues. Also, we think the method is especially sui
for side-disorder systems, where the spatial distribution
the vacancies~impurities! is hardly accounted for analyti

FIG. 6. Relative standard deviation of the average metast
lifetime for the 32332 ~lower curve! and the 16316 ~upper curve!
systems;J5250 K, D51500 K, andg5150. A relative standard
deviation close to one is typical of the single-droplet regime.
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PRE 60 5149METASTABLE STATES OF AN ISING-LIKE . . .
cally, while the sampling procedure works the same as in
pure system.

At a more fundamental level, we think the present meth
can offer a supplementary tool for theoretical studies on n
equilibrium statistical physics and metastable states. Ind
assuming the Markov property for the macroscopic variab
is equivalent to neglecting the influence of a part of the m
croscopic information relevant to the evolution of the ma
roscopic variables. An interesting challenge should be
gain of a deeper insight into the nature and the validity of
Markovian approximation in the dynamics of the metasta
states. Concretely, the validity of the Markov approximati
is related to the characteristic time scales in microscopic
macroscopic dynamics with respect to the metastable
time. The access to the time scales should involve the ca
lations of time correlation functions in microscopic and 1
and 2D macroscopic dynamics; their comparison might
plain the behaviors of the lifetime variation~with the field or
temperature! in the three dynamics. This encounters fund
mental problems of statistical physics as are thetime coarse-
graining of the information, the role of the entropy creatio
in the slow dynamics of systems far from equilibrium, or t
.
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d
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quantitative criterias based upon correlation functions for
distinction between equilibrium and nonequilibrium states

In conclusion, we think that the present method is ve
well suited for the study of metastable states and the ca
lation of their lifetimes around temperature-driven first-ord
transitions. It should be preferred to other methods, es
cially for studying small systems like nanoparticles and, b
ter, diluted systems. For large size systems, the densit
states calculation—on which is based the method—is, at
present, very expensive, but a phenomenological finite-
scaling might be established.
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